CBSE Class X Mathematics Term 1 Sample Paper-1

Time: 3 hours

Total Marks: 90

General Instructions:

- 1. All questions are compulsory.
- The question paper consists of 31 questions divided into four sections A, B, C and D.
 Section A comprises of 4 questions of 1 mark each, Section B comprises of 6 questions of 2 marks each, Section C comprises of 10 questions of 3 marks each and Section D comprises of 11 questions of 4 marks each.
- 3. Question numbers 1 to 4 in **Section A** are multiple choice questions where you are to select one correct option out of the given four.
- 4. Use of calculator is not permitted.

Section A

(Questions 1 to 4 carry 1 mark each)

1. The decimal expansion of the rational number $\frac{2^3}{2^2.5}$ will terminate after which of the

following conditions:

- A. One decimal place
- B. Two decimal places
- C. Three decimal places
- D. More than three decimal places

2. If one of the zeroes of the quadratic polynomial (k - 1) x² + 1 is -3, then the value of k is

A.
$$\frac{-8}{9}$$

B. $\frac{8}{9}$
C. $\frac{4}{9}$
D. $\frac{-4}{9}$

- **3.** The mean of 6 numbers is 16. With the removal of a number, the mean of remaining numbers is 17. The number removed is:
 - A. 2
 - B. 22
 - C. 11
 - D. 6

4. If \triangle ABC ~ \triangle RQP, \angle A = 80°, \angle B = 60°, the value of \angle P is:

- A. 60°
- B. 50°
- C. 40°
- D. 30°

Section B (Questions 5 to 10 carry 2 marks each)

- 5. Use Euclid's division algorithm to find H.C.F. of 870 and 225.
- **6.** In the figure, AB \perp BC, GF \perp BC, DE \perp BC. Prove that \triangle ADE $\sim \triangle$ GCF.

- 7. If $\cot \theta = \frac{7}{8}$, find the value of $\frac{(1 + \sin \theta)(1 \sin \theta)}{(1 + \cos \theta)(1 \cos \theta)}$
- **8.** α , β are the roots of the quadratic polynomial p (x) = x² (k + 6)x + 2 (2k 1). Find the value of k, if $\alpha + \beta = \frac{1}{2}\alpha\beta$.
- **9.** In \triangle ABC, m \angle B = 90°, AB = 7cm and AC BC = 1 cm. Determine the values of sinB and cosB.

C.I	135 -140	140 -145	145 - 150	150 -155	155 - 160	160 - 165
F	4	7	11	6	7	5

10. Find the median class and the modal class for the following distribution.

Section C (Questions 11 to 20 carry 3 marks each)

- **11.** If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 2x + 1$, then find a quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\alpha}{\beta}$.
- **12.** If in a rectangle, the length is increased and breadth is reduced each by 2 metres, then the area is reduced by 28 sq metres. If the length is reduced by 1 metre and breadth is increased by 2 metres, then the area is increased by 33 sq metres. Find the length and breadth of the rectangle.

13. Prove that:
$$\sqrt{\frac{\sec \theta - 1}{\sec \theta + 1}} + \sqrt{\frac{\sec \theta + 1}{\sec \theta - 1}} = 2\cos ec\theta$$

- 14. For what values of a and b does the following pairs of linear equations have an infinite number of solutions:
 2x + 3y = 7; a (x + y) b (x y) = 3a + b 2
- **15.**Find the modal age of 100 residents of a colony from the following data:

Age in yrs. (more than or equal to)	0	10	20	30	40	50	60	70
No. of Persons	100	90	75	50	28	15	5	0

16. In the figure, XY || QR, $\frac{PQ}{XQ} = \frac{7}{3}$ and PR = 6.3 cm. Find YR.

17. Find the value of: $\frac{\sec(90^\circ - \theta) \cdot \cos ec\theta - \tan(90^\circ - \theta) \cot \theta + \cos^2 25^\circ + \cos^2 65^\circ}{3\tan 27^\circ \tan 63^\circ}$

- 18.A leading library has a fixed charge for the first three days and an additional charge for each day thereafter. Bhavya paid Rs. 27 for a book kept for seven days, while Vrinda paid Rs. 21 for a book kept for five days. Find the fixed charge and charge for each extra day.
- **19.** In triangle ABC, right angled at B, AB = 5 cm, \angle ACB = 30°. Find the length of BC and AC.

20. If mean of the following data is 86, then what is the value of p?

Wages (in Rs.)	50-60	60-70	70-80	80-90	90-100	100-110
Number of worker	5	3	4	р	2	13

Section D (Questions 21 to 31 carry 4 marks each)

21. If sec θ + tan θ = p, then show that $\frac{p^2 - 1}{p^2 + 1} = \sin \theta$.

- **22.** A number of the form 15^n , where $n \in N$ (the set of natural numbers), can never end with a zero. Justify this statement.
- **23.** For the data given below draw less than ogive curve.

Marks	0 - 10	10 - 20	20 - 30	30 - 40	40 - 50	50 - 60
Number of	7	10	23	51	6	3
students						

24.Solve the equations 2x - y + 6 = 0 and 4x + 5y - 16 = 0 graphically. Also determine the coordinate of the vertices of the triangle formed by these lines and the x-axis.

25. Prove that:
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A$$

- **26.** The remainder on dividing $x^3 + 2x^2 + kx + 3$ by x 3 is 21. Sanju was asked to find the quotient. He was a little puzzled and was thinking how to proceed. His classmate Gunjan helped him by suggesting that he should first find k and then proceed further. Explain how the question was solved. What value is indicated from this action?
- **27.** In triangle ABC, D is the mid-point of BC and AE \perp BC. If AC > AB, then show that: AB² = AD² - BC × DE + $\frac{BC^2}{4}$.

28. Prove that:
$$\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \cos ecA + \cot A$$

29. In the distribution given below, 50% of the observations are more than 14.4. Find the values of x and y if the total frequency is 20.

Class Interval	0 - 6	6 - 12	12 - 18	18 - 24	24 - 30
Frequency	4	x	5	у	1

- **30.**In a right-angled triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides.
- **31.** Prove that $\sqrt{n-1} + \sqrt{n-1}$ is an irrational number.